Matrix interpretation of multiple orthogonality
نویسندگان
چکیده
منابع مشابه
Nonnegative Matrix Factorization with Orthogonality Constraints
Nonnegative matrix factorization (NMF) is a popular method for multivariate analysis of nonnegative data, the goal of which is to decompose a data matrix into a product of two factor matrices with all entries in factor matrices restricted to be nonnegative. NMF was shown to be useful in a task of clustering (especially document clustering), but in some cases NMF produces the results inappropria...
متن کاملMultiple Orthogonality and Applications in Numerical Integration
In this paper a brief survey of multiple orthogonal polynomials defined using orthogonality conditions spread out over r different measures are given. We consider multiple orthogonal polynomials on the real line, as well as on the unit semicircle in the complex plane. Such polynomials satisfy a linear recurrence relation of order r+1, which is a generalization of the well known three-term recur...
متن کاملImproved Matrix Interpretation
We present a new technique to prove termination of Term Rewriting Systems, with full automation. A crucial task in this context is to find suitable well-founded orderings. A popular approach consists in interpreting terms into a domain equipped with an adequate well-founded ordering. In addition to the usual interpretations: natural numbers or polynomials over integer/rational numbers, the rece...
متن کاملProjective Nonnegative Matrix Factorization: Sparseness, Orthogonality, and Clustering
Abstract In image compression and feature extraction, linear expansions are standardly used. It was pointed out by Lee and Seung that the positivity or non-negativity of a linear expansion is a very powerful constraint, that seems to lead to sparse representations for the images. Their technique, called Non-negative Matrix Factorization (NMF), was shown to be useful in approximating high dimens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Algorithms
سال: 2009
ISSN: 1017-1398,1572-9265
DOI: 10.1007/s11075-009-9355-3